"Impact of human-animal interactions on health & productivity of farm animals"

Paul Hemsworth
Animal Welfare Science Centre, University of
Melbourne, Australia.

The human-animal relationship

Farm animals can be frequently and intensively "handled" by humans and research has shown that these human-animal interactions can have **profound effects** on the behaviour and stress physiology of these animals.

Emotional dimensions affecting the animal's responseto humans

Our research

Our research has focused on the **fear response** of farm animals to humans, one dimension of the animal's 'perception' of humans.

A model of human-animal interactions in the livestock industries

Fear

- > Is a powerful emotional state
- Is a normal, adaptive response, developed to protect the individual from injury
- It normally gives rise to defensive behaviour or escape and activation of the autonomic nervous system and the neuroendocrine system.

Fear

- Fear of humans can be assessed on the basis of the behavioural response of the animal to an experimenter in a standard test.
- > For example,
 - oavoidance response to an approaching experimenter, or
 - oapproach behaviour to a stationary experimenter.

Distribution in fear responses in broiler chickens

Variable - number of birds within 0.5m of experimenter per observational scan

(From Hemsworth & Coleman, 1998)

Distribution in fear responses in dairy cows

Variable - time to closely approach human (s)

Evidence of this model of the humananimal relationship in agriculture

This presentation will consider the following:

- 1. Animal fear and productivity relationships
- 2. Stockperson behaviour and animal fear relationships
- 3. Stockperson attitude and behaviour relationships
- 4. Opprtunities to improve human-animal relationships.

1. Animal fear – productivity relationships

Animal fear – productivity relationships

 Consistent negative relationships, based on farm averages, between fear of human and productivity found in studies in the dairy, pig and poultry industries.

Correlations between fear of humans and animal productivity Fear & Productivity

Pigs

Hemsworth e	et al (1981h)	-0.51*
	U UU LAZUADI	-0.01

Hemsworth *et al* (1989) -0.55*

Hemsworth *et al* (1994c) -0.01

Dairy cows

Breuer et al	(2000)	-0.46*
--------------	--------	--------

Hemsworth *et al* (2000) -0.27

Meat chickens

Hemsworth et al	(1994a)	-0.57**
-----------------	---------	---------

Cransberg (1996) -0.10

Hemsworth *et al* (1996) -0.39

Laying hens

Barnett *et al* (1992) -0.58**

Handling and productivity

- Handling studies, particularly on pigs, have consistently shown that handling treatments that elicit high levels of fear adversely affect animal productivity.
- A number of these handling studies implicate stress in the deleterious effects of aversive handling on animal productivity.

Handling and productivity of pigs

Experiment	-ve handling	P value
Hemsworth et al. (1981)		
Growth rate		0.05
Gonyou et al. (1986)		
Growth rate		0.05
Hemsworth et al. (1986)		
Pregnancy rate		0.05
Hemsworth et al. (1987)		
Growth rate	↓	0.05
Hemsworth & Barnett (1991)		
Growth rate		NS
Hemsworth et al. (1996)		
Growth rate		0.05

Handling and the productivity & stress physiology of dairy cows

Variables	Handling		
	-ve	+ve	
Milk yield (kg/day)	16.7 ^a	18.0 b	
Flight distance (m)	4.74 ^b	1.96 ^a	
Lameness (%)	48% ^b	6% ^a	
	From Breuer (2000)		

Animal fear & stress

- High levels of fear of humans can induce chronic stress
- This is likely to be the mechanism whereby fear reduces animal productivity.

Handling and stress physiology of pigs

Experiment	-ve handling	P value
Hemsworth et al. (1981)		
Basal cortisol	\uparrow	0.05
Gonyou et al. (1986)		
Adrenal glands	\uparrow	0.05
Hemsworth et al. (1986)		
Basal cortisol	\uparrow	0.05
Hemsworth et al. (1987)		
Basal cortisol	\uparrow	0.01
Hemsworth & Barnett (1991)		
Basal cortsiol	\uparrow	NS
Hemsworth et al. (1996)		
Adrenal glands	\uparrow	0.01

Basal plasma cortisol (free) concentrations of gilts handled positively or negatively (Hemsworth *et al.*, 1981)

Handling, growth & stress physiology of growing pigs

Variables	Handling Treatment			
	+ve	Control	Inconsistent	-ve
Time to interact with human (s)	10 ^a	92 ^b	175 °	160°
Growth rate (g/day)	455 ^b	458 ^b	420 ^{ab}	404 ^b
Basal cortisol (ng/ml)	1.6 ^x	1.7 ^x	2.6 ^y	2.5 ^y

From Hemsworth et al. (1987)

Handling, productivity, fear & stress physiology of laying hens

Variables	Handling	treatments
	Minimal	Additional
Times in front		
of cage (mean/bird)	1.22 ^y	2.12 ^x
Hen-day egg		
production (%)	83.1 ^b	89.4 ^a
Corticosterone		
concentration (nmol/l)	11.7 ^b	7.9 ^a
	From	Barnett et al. (1994)

Animal fear, stress & health

- While there has been little research conducted on animal health, a limited number of studies indicate the potential impact of human-animal relationships on animal health.
- Furthermore, stress elicited by fear has implications for animal health because of the close relationship between stress and illness (Moberg, 2000).

Handling, growth & health of chickens

Social	FCE	Antibody response*	
environment		HA line	LA line
Socialized	0.320 ^b	8.4 ^c	4.9 ^a
Ignored	0.261 ^a	7.7 ^b	5.0 ^a
Hassled	0.278^{a}	7.0^{a}	5.5 ^a
		From Gro	ss and Siegel (1981)

FCE – weight gain/feed consumed

^{*}air sac lesions

^{*} antibody response to sheep RBC

Handling, growth & health of chickens

Socialized at 1-8 wks	FCE	Response Lesions [#]	to <i>E coli</i> Deaths	Antibody titres*
No	0.240 ^a	60 ^b	31 ^b	5.4 ^a
Yes	0.298 ^b	44 ^a	6 ^a	7.0 ^b

From Gross and Siegel (1981)

FCE – weight gain/feed consumed

^{*}air sac lesions in response to E coli challenge

^{*} antibody response to canine RBC

Fig. Management factors and lameness (Chesterton et al., 1989).

Handling and the productivity & stress physiology of dairy cows

Variables	Han		
	-ve	+ve	
Flight distance (m)	4.74 ^b	1.96 ^a	
Milk yield (kg/day)	16.7 ^a	18.0 ^b	
Lameness (%)	48% ^b	6% ^a	
	From Breue	r (2000)	

Handling, productivity & meat quality of veal calves

Variables	Handling 1		P value	
	Control	+ve		
Growth rate (kg/day)	1.21	1.19	0.50	
Calves with ulcers (%)	36.4 ^b	0.0^{a}	0.05	
Glycogenic potential				
(µmol/g)	154.1 ^a	172.6 ^c	0.03	
	From Lensink et al. (2000)			

Handling, behaviour & stress physiology of calves

Variables	Stockperson Behaviour		P value
	+ve	-ve	
Incidents at:			
- unloading	0.60	0.67	0.60
- lairage	0.79^{a}	1.15 ^b	0.007
Heart rate (bpm) at:			
- unloading	185.6 ^a	193.0 ^b	0.03
- lairage (+ 5 min)	147.8 ^a	149.2 ^b	0.63

From Lensink et al. (2001a)

Animal fear, stress & health

• In a study of the relationships between stockperson characteristics and the behaviour, health and productivity of veal calves, Lensink *et al.* (2001b) found that the behaviour of the stockperson was an important predictor of calf mortality.

Fear, activation of the HPA axis and animal fitness:

The chronic activation of the HPA axis comes at a physiological cost such as:

- decreased metabolic efficiency (catabolic effects of ACTH and corticosteroids – eg gluconeogenesis),
- reduced reproductive performance,
- impaired immunity and
- morbidity and mortality.

2. Stockperson behaviour- animal fear relationships

Studying stockperson behaviour

Measure frequency of behaviour

- -ve behaviour slaps, hits, shouting, fast speed of movement, unexpected movement, etc.
- +ve behaviour pats, talking, hand resting on back of animal, slow and deliberate movement, etc.

Distribution in stockperson behaviour

Variable is negative behaviour used in handling cows

Correlations between stockperson behaviour & fear of humans

-ve Behaviour & Fear

Pigs

Hemsworth et al (1989)	0.45*
------------------------	-------

Hemsworth et al (1994) 0.01

Coleman et al (2000) 0.40*

Dairy cows

Dicuci ct ai (2000)	Breuer et al	(2000)	0.31
---------------------	--------------	--------	------

Hemsworth et al (2000) 0.32**

Waiblinger et al (2002) 0.40**

Meat chickens

Cransberg (1996)	0.43*
------------------	-------

Hemsworth et al (1996) 0.32

3. Stockperson attitude – behaviour relationships

Demographic variables
Personality traits
Attitudes towards targets

Beliefs that behaviour leads to outcomes Evaluation of outcomes

Attitude towards the behaviour

Intention |

Behaviour

Studying stockperson attitudes

Measure attitudes

Attitude questionnaires were used to obtain information on the **behavioural beliefs** of stockpeople about interacting with their farm animals.

Correlations between stockperson attitudes & behaviour

+ve Beliefs about Effort & -ve Behaviour

Pig industry

Hemsworth et al (1989)	-0.47*
Hemsworth et al (1994c)	-0.12
Coleman et al (1996)	-0.10

Dairy industry

Breuer et al (2000)	-0.50**
Hemsworth et al (2000)	-0.36*
Waiblinger et al. (2002)#	-0.50**

Correlations between stockperson attitudes & behaviour

+ve Beliefs about Petting & -ve Behaviour

Pig industry

Hemsworth et al (1989)	-0.61**
Hemsworth et al (1994c)	-0.55**
Coleman et al (1996)	-0.20

Dairy industry

Breuer et al (2000)	-0.50**
Hemsworth et al (2000)	-0.47**
Waiblinger et al. (2002)	-0.35

A model of human-animal interactions in the livestock industries

Conclusion

- behaviour and the key attitudes underpinning these, appears to be the key to manipulating these humananimal interactions to improve animal welfare, health and productivity.
- Some of these attitudes and behaviours in commercial situations may not be intuitively obvious.

4. Opportunities to improve humananimal relationships

A model of human-animal interactions in the livestock industries

Opportunities to improve humananimal interactions

The sequential relationships between stockperson attitude and behaviour and animal fear, welfare and productivity demonstrate the opportunities to improve animal welfare and productivity through appropriate:

- training stockpeople
- > selection of stockpeople.

Cognitive-behavioural training

- To change the behaviour of stockpeople towards farm animals ultimately requires:
 - targeting the **beliefs** that underlie the behaviour,
 - targeting the **behaviour** in question, and
- then maintaining these changed beliefs and behaviour.

Intervention studies – establishing causality and validating training in the livestock industries

Two treatments imposed:

- Intervention cognitive-behavioural intervention procedure, targeting key stockperson attitudes and behaviour
- Control no intervention was attempted.

Measurements

- Stockperson attitudes behavioural beliefs about handling animals.
- Stockperson behaviours number and percentage of negative tactile behaviours.
- Fear of humans behavioural response to humans.
- Animal productivity.

Analysis of Covariance

Variables	Treatments		LSD	
	Control	Interv.	(P=0.05)	
Stockperson attitude				
"Petting" subscale	19.6 ^b	23.6 ^a	3.37	
"Effort" subscale	38.2 ^b	42.1 ^a	4.07	
Stockperson behaviou	r			
-ve behaviour (%)	77.1 ^y	47.3 ^x	13.97	
Forceful -ve			هـ ب	
behaviour (%)	12.2 ^y	2.4 ^x	7.47	
	From Hemsworth et al. (2002)			

SCIENCE CENTRE

Analysis of Covariance

Variables	Treatments		LSD
	Control	Interv.	(P=0.05)

Cow behaviour

Flight distance (m) 4.5^b 4.2^a

0.33

From Hemsworth et al. (2002)

Analysis of Covariance

Variable	Means			
	Control	Interv.	P value	
Milk yield (l/cow/mo)	551	580	0.02	
Protein (kg/cow/mo)	17.7	18.5	0.03	
Fat (kg/cow/mo)	22.8	23.8	0.04	
Milk cell count (,000)	241	224	0.38	

Hemsworth et al. (2002)

Conclusion

- behaviour and the key attitudes underpinning these, may provide opportunities to improve humananimal interactions.
- Indeed, research has shown that targeting these key attitudes and behaviour may improve animal welfare, health and productivity in those situations in which animal fear imposes severe limits.

Training programs available

- Pig stockpeople
- Dairy stockpeople
- Pig stockpeople at abattoirs
 - > Transport drivers
 - Sheep and cattle stockpeople at abattoirs
 - ➤ EU 6th Framework Sub-project 3 "Minimising Handling Stress": Prototype training packages for cattle, pigs & laying hens.

A model of human-animal interactions in the livestock industries

Thank you!

